
Poznań Supercomputing and Networking Center

Radosław Januszewski
radoslaw.januszewski@man.poznan.pl

Kernel Level Checkpoint Restart Functionality
for SGI Altix systems

SGI UG 2005, 13-16 June 2005

• Kernel level

– most transparent solution – require no changes in
checkpointed application

• User level (linkable library)

– require to recompile users applications

• Application level

– require user to write all essential functionality

Introduction

Target platform

CPU: IA64 (4 x Itanium2)

OS: SGI ProPack v2.2, 2.3, 3.0 for Linux

ProPack 4.0

Kernel: 2.4.20-sgi220r3

2.4.21-sgi305r1

2.6.xx

All the development and tests efforts were performed on the Altix 3300
platform.

Main features (1/5)

Support for multi processes programs

A user job can consist of many processes. Each process is
allowed to possess any number of „children”.

Support for System V IPC

- semaphores

- message queues

- shared memory

Support for threads

 Only for kernel 2.6

Main features (2/5)

Support for interactive programs

User applications can use terminals.

Support for signals

All the actions and resources connected with signals handling are
stored/restored.

Support for programs linked statically

All statically linked libraries are stored/restored properly.

Support for programs linked dynamically

All memory segments mapped from dynamically linked libraries are
stored/restored properly.

Main features (3/5)

Support for open files and open directories

During the restoring stage, all previously opened files and directories
are reopened.

Support for mapped files

Memory segments that were explicitly mapped by the mmap() are
properly stored/restored.

Support for mprotect() settings

All memory access control flags are stored/restored.

Support selected pseudo devices

/dev/null, /dev/zero, /dev/random.

Main features (4/5)

Support for STDIN / STDOUT / STDERR

Connections with standard input, output and error streams are
stored/restored.

Emulation of „zombie” processes

If during checkpoint stage there are some „zombie” processes that
constitute checkpointed job, after restoring stage the

appearance of those „zombie” processes is emulated.

Support for program arguments

Vector of program arguments associated with each process is

stored/restored.

Support for environment variables

Vector of environment variables associated with each process is
stored/restored.

Main features (5/5)

Working directory

After the recovery stage, the working directory path is the same as
during the checkpoint stage.

Settings made by umask() function

Umask settings are stored/restored.

Settings made by nice() function

Scheduling priority levels of processes are stored/resotred.

Settings made by setrlimit()

Resource limits set by means of setrlimit() are stored / restored..

Accounting data
They are stored and restored, but their sense can be a little violated.

Problem

Even if the checkpoint image is created there is no
guarantee of proper restart.

Unique resource identifiers

- Linux is not designed to support checkpointing

- After restart some resource identifiers may be busy/taken

- Problems with migration applications from smaller to larger
 computation nodes

- Operations on IPC resources are based on identifiers held outside
 kernel structures.

Basic scenario

application

process
pid 1040kill(1040)proces

pid 1039

application

proces
pid 1039

proces
pid 1039 process

pid 2450kill(1040)proces
pid 1340

application

proces
pid 1039

proces
pid 1039 process

pid 2450kill(1040)proces
pid 1340 FAILED

Solution

Resource identifier virtualisation

Resource voirtualisation - idea

Normal system call execution path

software interrupt

interrupt number translation

execution of system call

return result to application

application
kill(1040)

user level

kernel level

KERNEL

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open()kill() other

syscall table

Resource voirtualisation - idea

Normal system call execution path

software interrupt

interrupt number translation

execution of system call

return result to application

application
kill(1040)

user level

kernel level

KERNEL

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open()kill() other

syscall table

Resource voirtualisation - idea

Normal system call execution path

software interrupt

interrupt number translation

execution of system call

return result to application

application
kill(1040)

KERNEL

user level

kernel level

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open()kill()
kill(1040) other

syscall table

application
kill(1040)

KERNEL

user level

kernel level

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open()kill()
kill(1040) other

syscall table

Resource voirtualisation - idea

Normal system execution path

software interrupt

interrupt number translation

execution of system call

return result to application

Resource voirtualisation - idea

System call execution path with virtualisation

software interrupt

interrupt number translation

parameter translation

execution of system call

result value translation

Return result to application

application
kill(1040)

KERNEL

User level

Kernel level

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open() kill() other

virtualisation module

syscall table

Resource voirtualisation - idea

System call execution path with virtualisation

software interrupt

interrupt number translation

parameter translation

execution of system call

result value translation

return result to application

application
kill(1040)

KERNEL

User level

Kernel level

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open() kill() other

virtualisation module

syscall table

Resource voirtualisation - idea

System call execution path with virtualisation

software interrupt

interrupt number translation

parameter translation

execution of system call

result value translation

return result to application

application
kill(1040)

KERNEL

syscall table

User level

Kernel level

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open() kill() other

virtualisation module

kill(1040) -> kill(540)

Resource voirtualisation - idea

System call execution path with virtualisation

software interrupt

interrupt number translation

parameter translation

execution of system call

result value translation

return result to application

application
kill(1040)

KERNEL

User level

Kernel level

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open() kill()
kill(540) other

virtualisation module

kill(1040) -> kill(540)

syscall table

Resource voirtualisation - idea

System call execution path with virtualisation

software interrupt

interrupt number translation

parameter translation

execution of system call

result value translation

return result to application

application
kill(1040)

KERNEL

User level

Kernel level

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open() kill()
kill(540) other

virtualisation module

kill(1040) -> kill(540)

syscall table

Resource virtualisation - idea

System call execution path with virtualisation

software interrupt

interrupt number translation

parameter translation

execution of system call

result value translation

return result to application

application
kill(1040)

KERNEL

User level

Kernel level

op
en ki
ll

sh
m

ge
t

ot
he

r

...

open() kill()
kill(540) other

virtualisation module

kill(1040) -> kill(540)

syscall table

Virtualized resources

PID

After recovering, processes are deceived to possess the same PID as
during the checkpoint stage. PID’s virtualization allows to restore
groups of processes and relationships between them (job tree).

PGID

Process group ID. After recovering, processes are deceived that
PGID has not changed.

System V IPC’s keys

Even if after the recovery stage, the previously used keys are
occupied, it seems to the recovered program that it still uses the
original key values.

System V IPC’s identifiers

After the recovery stage, the identifiers values are changed, but the
user programs are deceived that nothing has changed.

Resource virtualisation

Mapping domains

Every restarted application may be placed/encapsulated in a
mapping domain which provides the application with its own set of identifiers.

Any process or thread created within a mapping domain will be also
included into that mapping domain.

computation host 2computation host 1

process
(pid 101)

process
(pid 102)

process
(pid 100)

process
(pid 101)

process
(pid 102)

process
(pid 100)

computation host 3

mapping domain (application 2)

PID

re
so

ur
ce

 t
ra

ns
la

tio
n

ta
bl

es

process
(pid 101)

process
(pid 102)

process
(pid 100)

Resource translation table
(process identifiers)

system
resource

domain
resource

204
1305
1100

100
101
102

IPC

FS

...

mapping domain (application 1)

PID

re
so

ur
ce

 tr
an

sl
at

io
n

ta
bl

es

process
(pid 101)

process
(pid 102)

process
(pid 100)

Resource translation table
(process identifiers)

system
resource

domain
resource

1203
304
1850

100
101
102

IPC

FS

...

M
IG

RA
TIO

N

M
IG

R
AT

IO
N

Kernel Level Elements

„ckpt_mod” module – Provides access to resources and information that are
needed during the checkpoint and restart activity. If there was no virtualization in
our package, it would be the only module.

„syscover” module – Implements virtualization of identifiers of resources.
Additionally it provides the mechanism for the „zombie” processes emulation.

User Level Elements

„chkpnt” tool –Tool which is executed by end user in order to do the checkpoint.

„resume” tool – Tool which is executed by user in order to restart a program.

Checkpoint-restart package content (1/2)

ip_tables xpmem xp syscover ckpt_mod

ke
rn

el
m

od
ul

es
co

re
ke

rn
el

...

us
er

le
ve

l

memory management, scheduling, syscalls, interrupts and exceptions,
managing I/O devices, ...

/bin/ls /bin/top /bin/tar chkpnt resume...

Checkpoint-restart package content (2/2)

chkpnt

(checkpoint tool)

resume

(resume tool)

syscover
(resources virtualization)

ckpt_mod
(access to resources)

us
er

le
ve

l
ke

rn
el

le
ve

l
Dependencies between package elements

Storing processes

The main checkpoint labour is made by the chkpnt tool and the ckpt_mod
module.

chkpnt

syscover

ckpt_mod

- takes PID of
 the process that is
 to be
 checkpointed

ptrace() - attaches chkpnt to the user process and stops it
- collects the values of registers
- finally detaches chkpnt from the user process,
 so that it can proceed execution

procfs - discloses the process state
- helps to discover all all the children of the process (it is made recurrently)
- the custom procfs entries allow to communicate with the ckpt_mod module

- it has access to all resources that make up process context
- it stores all the memory segments and information needed to restore
 the required resources

- supplies information about virtual identifiers

Restoring processes
The main restart labour is made by resume tool and ckpt_mod module.

resume

syscover

ckpt_mod

- takes pathname
 of the directory
 with program
 image

System V
IPC syscalls

- common syscalls are used to recreate System V IPC objects

fork() - the resume tool calls fork() syscall to create the process that correspond to
 the process that is being restored
- to rebuild all the relationships between the processes, each newly created
 process calls fork() for each child that is to be recovered

- restores all memory segments (besides the .text)

- creates a new mapping domain, initializes the mapping tables associated with
 the virtualized identifiers
- initializes the structures needed for emulation of the „zombie” processes

barrier

ptrace() - it is used to attach to each process that has been created in the previous step
- it is used to restore the registers of each process

procfs - the custom procfs entries are used as the interface to the ckpt_mod and
 syscover modules

To improve legibility some details, such as restoring signals actions, open files, working directory, etc. have been omitted.

exec() - using original process binaries, it restores the .text segment

• To make checkpoint
chkpnt –p <pid>

• To restore checkpoint
resume –od <image_directory>

psncC/R - Usage

Total checkpoint time

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

19 53 110 191 293 419 568 740 934 1152

image size [MB]

ti
m

e
[s

]

checkpoint performance

Summary

yesSystem V IPC objects identifiers and keys virtualization.

yesSystem V IPC objects recovery
yesPIDs and PGIDs virtualization

yessupport for multi-process aplications

yessupport for zombie processes

soonThreads

in plansPOSIX IPC

yesend user's processes can be linked statically and dynamically

yesreopening open files

yesreopening open directories

yessimple devices like /dev/zero, /dev/null and simple procfs files

yessignals (including pending signals, signal mask, signal disposition)

yescommand line arguments recovery

yesenvironment variables recovery

yesworking directory recovery

yesRoot privilages required in order to install checkpointing funcionality in system

noRecompilation with additional libraries required.

noChanges in end user's code required.

ppC/RCapability

• The C/R mechanism for Altix systems is now available!
• You may try it without any changes in your

applications.
• No changes in your system configuration required

(kernel modules are loaded dynamicly)
• It can be downloaded from http://checkpointing.psnc.pl

Summary

THE END

